Abandoning Fossil Fuel: How fast and how much?

Armon Rezai
Vienna University of Economics & Business

&

Frederick van der Ploeg
OxCarre
ABANDONING FOSSIL FUEL: HOW FAST AND HOW MUCH?

Armon Rezai* and Frederick van der Ploeg**

Abstract

Climate change must deal with two market failures, global warming and learning by doing in renewable use. The social optimum requires an aggressive renewables subsidy in the near term and a gradually rising carbon tax which falls in long run. As a result, more renewables are used relative to fossil fuel, there is an intermediate phase of simultaneous use, the carbon-free era is brought forward, more fossil fuel is locked up and global warming is lower. The optimal carbon tax is not a fixed proportion of world GDP. The climate externality is more severe than the learning by doing one.

Keywords: climate change, integrated assessment, Ramsey growth, carbon tax, renewables subsidy, learning by doing, directed technical change, multiplicative damages, additive damages

JEL codes: H21, Q51, Q54

September 2013

* Department of Socioeconomics, Vienna University of Economics and Business, Nordbergstr.15/4/B, 1090 Vienna, Austria. Email address: Armon.Rezai@wu.ac.at.

** Department of Economics, Oxford University, Manor Road Building, Manor Road, Oxford OX1 3UQ, U.K. Also affiliated with VU University Amsterdam. rick.vanderploeg@economics.ox.ac.uk.
1. Introduction

Climate change is the biggest externality our planet faces and the best way to deal with this is to correct for that is to price carbon appropriately, either by levying a carbon tax or by having a market for carbon emission permits. The key questions are what the level of the optimal price of carbon should be and what the time profile of this price should be. The answer is that, in the absence of distortions in raising public revenue and other second-best issues, it must be set to the social cost of carbon: the present value of all future marginal global warming damages from burning one extra unit of fossil fuel. The answer is not straightforward in a world with exhaustible fossil fuel, increasing efficiency of carbon-free alternatives, gradual and abrupt transitions from fossil fuel to renewables, and endogenous growth and structural change. Our aim is thus to provide an answer to this question within the context of a fully calibrated integrated assessment model of climate change and Ramsey growth with exhaustible fossil fuel, gradual transition to carbon-free renewables and technical progress in the production of renewables.

We show that pricing carbon appropriately has the following consequences: it curbs fossil fuel use and promotes the substitution away from fossil fuel towards renewables, it leaves more untapped fossil fuel in the crust of the earth, and it brings forward the carbon-free era where fossil fuel has been completely abandoned. An initial phase where only fossil fuel is used is followed by an intermediate phase where fossil fuel and renewables are used alongside each other and a final carbon-free phase where the economy has fully transitioned to renewables. Global warming is curbed by optimally trading off reductions in global warming damages against the welfare losses from less economic growth and consumption. In contrast to earlier integrated assessment models following Nordhaus (2008) the timing of the phases of fossil fuel use, simultaneous use, and renewable use are endogenous in our model and driven by economic considerations and Hotelling rents on exhaustible resources play a prominent role.

So far international efforts have failed to establish a stringent system of carbon pricing and some national governments have instead moved forward to spur the transition away from fossil energy by using policy which increases the competitiveness of renewable energy production (e.g. feed-in tariffs). We show that such a policy mix of a zero carbon tax and an optimal subsidy helps bring forward the carbon-free era but is not sufficient to limit climate

1 From now on we will refer to the optimal carbon tax on the understanding that it refers to the optimal price of carbon and could equally refer to the price fetched for carbon on an efficient emissions market or the shadow price of direct control legislation.
change to levels usually deemed to be ‘safe’. Cooperation in combating climate change yields higher consumption and welfare levels than cooperation in the generation of renewable energy. The optimal policy mix must involve an aggressive subsidy for renewable energy sources to bring those sources into use and a gradually increasing carbon tax to price out fossil energy sources. Our analysis also highlights the following features.

First, the trade-off between global warming damages and welfare from consumption is analyzed within the context of a tractable fully optimizing Ramsey model of economic growth with a temporary population boom and ongoing technical progress. The seminal study of Nordhaus (2008) deals with the trade-off between growth and global warming but it optimizes welfare by choosing the shares of output allocated to saving and end-of-pipe mitigation. Our model is forward looking and maximizes global welfare by choosing the levels of consumption and carbon-intensive or carbon-free energy consumption in a Ramsey growth model as is also done in Rezai et al. (2012) and Golosov et al. (2013). However, we analyze not only the optimal carbon tax but also the optimal transition times for introducing the renewable alongside fossil fuel and abandoning fossil fuel altogether as well as the amount of untapped fossil fuel. We derive our results based on a calibrated and much richer version of the analytical growth and climate models put forward in van der Ploeg and Withagen (2013).

Second, fossil fuel extraction costs rise as the remaining stock of reserves falls and less accessible fields need to be explored. This allows us to consider the important role of untapped fossil fuel in the fight against global warming whereas in most integrated assessment models such as the DICE model of Nordhaus (2008) no answer is given on how much fossil fuel should be left untapped. Our goal is thus to get an estimate of the maximum cumulative carbon emissions and the corresponding optimal carbon budget which is the maximum amount of fossil fuel that can be burnt before global warming reaches unacceptable levels. We also estimate the durations of the initial phase where only fossil fuel phase in used, the intermediate phase where fossil fuel is used alongside renewables, and the final carbon-free phase where only renewables are used. The intermediate phase arises because we allow for endogenous technical progress in renewables.

Third, in integrated assessment models fossil fuel is typically abundant so that fossil fuel demand at any point of time does not depend on expectations about the price of the future renewable backstops and consequently the transition times simply occur when the price of fossil fuel inclusive of the carbon tax reaches the price of the renewable. In our analysis fossil
fuel is exhaustible and extraction costs are stock dependent so that the price of fossil fuel contains two forward-looking components: namely, the scarcity rent of fossil fuel (the present discounted value of all future increases in extraction costs resulting from an extracting an extra unit of fossil fuel) and the social cost of carbon (the present discounted value of all future marginal increases in global warming damages). This makes the calculation of the transition times much more complicated, since expectations about future developments such as learning by doing in using the renewable matter.

Fourth, the renewable is subject to decreasing returns to scale because we suppose its cost falls as cumulative use increases. Tsur and Zemel (2005) and Jouvet and Schumacher (2012) also study this but do not allow for stock-dependent fossil fuel extraction costs and do not offer a fully calibrated integrated assessment model. If these cost reductions from learning-by-doing externalities are not fully internalized, a subsidy is required alongside the carbon tax.

Fifth, we show that it matters how global warming damages are specified. In integrated assessment models it is customary to have global warming damages multiplicatively in the production function or in the technology in general (e.g., Tol, 2002; Stern, 2007; Nordhaus, 2008; Gerlagh and Liski, 2012; Golosov et al., 2013). This is justified if global warming causes respiratory and other diseases and consequently lower labour productivity, a fall in agricultural productivity, or rising sea levels and destruction of part of the capital stock. However, global warming also destroys natural habitats (e.g., coral reefs) and reduces biodiversity in which case additive damages are relevant. In that case, climate policy is less

2 Weitzman (2009) uses a reduced form welfare function with temperature directly decreasing welfare.

3 Barrage (2013) has carefully tried to distinguish the two types of damages and finds that about two thirds are damages in production and one third damages to utility or unrelated to the level of economic production. Damages can appear as an externality in social welfare (e.g., van der Ploeg and Withagen, 2013; John and Pecchenino, 1994). If utility from consumption is not strongly separable from climate damages, balanced growth is feasible with Cobb-Douglas production assuming away exhaustibility of non-renewables (Bretschger and Smulders, 2007). With additive separability Stokey (1998) shows that
ambitious because damages can more easily be compensated for by higher output. As a result, the economy switches later from fossil fuel to the carbon-free backstop and leaves less oil in situ. We find that with an elasticity of intertemporal substitution of 0.5 the social cost of carbon for additive damages is about half that for multiplicative damages from global warming.

Finally, our model generates a hump-shaped relationship between the optimal carbon tax and world GDP. In contrast, Golosov et al. (2013) offer a tractable Ramsey growth model which generates an optimal carbon tax which is proportional to GDP. Their result depends on bold assumptions: logarithmic utility, Cobb-Douglas production, 100% depreciation of capital in each period, zero fossil fuel extraction costs, and multiplicative production damages captured by a negative exponential function. We find that their result is not robust in a general integrated assessment model of climate change and Ramsey growth with exactly the same carbon cycle, especially if the coefficient of intergenerational inequality aversion differs very much from unity. The proportional carbon tax performs especially poorly if policy needs to address multiple market failures.

We focus on the effects of fossil fuel use on global warming in a detailed calibrated model of growth and climate change, but following Golosov et al. (2013) and based on Archer (2005) and Archer et al. (2009) we adopt a tractable model of the carbon cycle which is linear and allows for decay of only part of the stock of atmospheric carbon. This model of the carbon cycle abstracts from a delay between the carbon concentration and global warming (e.g., Gerlagh and Liski, 2012). Abstracting from such a lag biases the estimate of the social cost of carbon and the carbon tax upwards. A more realistic model of the carbon cycle should also model the dynamics of the stocks of carbon in the upper and lower parts of the ocean and the time-varying coefficients originally put forward in the path-breaking paper of Bolin and Eriksson (1958). We also capture catastrophic losses at high levels of atmospheric carbon but abstract from positive feedback effects and the uncertain climate catastrophes that can occur.

the growth process of the economy comes to an end if more and more output has to be devoted to abatement.

Weitzman (2009) finds in contrast for the same elasticity of intertemporal substitution that the optimal willingness to forsake current consumption to avoid future global warming is 7 times as large with additive damages and 2% growth per annum but this effect disappears in a stagnant economy. A reason for this is that he deals with damages in utility in partial equilibrium and we focus on damages in production in a fully specified integrated assessment model of Ramsey growth and climate change and exhaustible fossil fuel.

This formula is already being used a lot (e.g., Hassler and Krusell, 2012; Gerlagh and Liski, 2012).
in climate and growth models once temperature exceeds certain thresholds (e.g., Lemoine and Traeger, 2013; van der Ploeg and de Zeeuw, 2013).

Section 2 discusses a simple two-stock model of carbon accumulation in the atmosphere and global mean temperature based on Golosov et al. (2013) and discusses our specification of global warming damages which allows for bigger damages at higher temperatures than Nordhaus (2008). We do not take the approximation to damages used in Golosov et al. (2013), since this leads to lower damages than Nordhaus (2008) at higher temperatures. Section 3 formulates our general equilibrium model of climate change and Ramsey growth with factor substitution between energy and the capital-labour aggregate, depreciation of manmade capital, endogenous technical progress in renewables, and stock-dependent fossil fuel extraction costs. Section 4 uses the functional forms and calibration discussed in an appendix to highlight the different outcomes for the optimal carbon tax, the renewables subsidy, untapped fossil fuel, the time it takes to phase in renewable energy and to reach the carbon-free era, and welfare under the social optimum and the market outcomes with no or only partial policy interventions using a carbon tax and a renewable subsidy. It also shows that the simple formula for the carbon tax as a fixed proportion of output from Golosov et al. (2013) adapts incorrectly to multiple market failures, especially if intergenerational inequality aversion differs from unity. Section 5 discusses the sensitivity of climate policy to lower intergenerational inequality aversion, a lower discount rate, a higher equilibrium climate sensitivity, additive rather than multiplicative damages, the initial capital stock, the rate of endogenous technical change, changes in the growth rate and plateau of the population dynamics, higher substitutability between capital and energy in production, and more elaborate climate dynamics. Section 6 concludes.

2. A simple general equilibrium model of the optimal carbon tax

A tractable model of the optimal carbon tax has been put forward by Golosov et al. (2013) based on a decadal Ramsey growth model. This model relies on a simple carbon cycle characterized by:

\[(1) \quad E_{t+1}^P = E_t^P + \varphi_L F_t, \quad \varphi_L = 0.2, \quad E_0^P = 103 \text{ GtC},\]

\[(2) \quad E_{t+1}^T = (1 - \varphi) E_t^T + \varphi_0 (1 - \varphi_L) F_t, \quad \varphi = 0.0228, \quad \varphi_0 = 0.393, \quad E_0^T = 699 \text{ GtC},\]
where E_t^p denotes the part of the stock of carbon (GtC) that stays thousands of years in the atmosphere, E_t^T the remaining part of the stock of atmospheric carbon (GtC) that decays at rate $\varphi = 0.0228$, and F_t the rate of fossil fuel use (GtC/decade). This carbon cycle supposes that 20% of carbon emissions stay up ‘forever’ in the atmosphere and the remainder has a mean life of about 300 years, so $\varphi_0 = 0.2$. The parameter $\varphi_0 = 0.393$ is calibrated so that about half of the carbon impulse is removed after 30 years. This carbon cycle has time-invariant coefficients and abstract from this and other subtleties discussed by Bolin and Eriksson (1958). It also abstracts from the three-reservoir system used by Nordhaus (2008) for describing the exchange of carbon with the deep oceans arising from the acidification of the oceans limiting the capacity to absorb carbon.

The equilibrium climate sensitivity (ECS) is the rise in global mean temperature following a doubling of the total stock of carbon in the atmosphere, $E_t = (E_t^p + E_t^T) / 2.13$ ppm by volume CO2 where 2.13 ppm by volume CO2 corresponds to 1 GtC. An often used estimate for the highly uncertain ECS is 3 (IPCC, 2007) implying an equilibrium change of 3°C in mean temperature at an atmospheric concentration of 560 ppm by volume CO2. Ignoring the lags between stocks of atmospheric carbon and global warming discussed by Gerlagh and Liski (2012), the global mean temperature as a difference in degrees Celcius from the pre-industrial temperature (T) thus increases with the current total stock of atmospheric carbon:

$$ T_t = \omega \ln (E_t / 280) / \ln(2), \quad \omega = 3, \quad E_t = (E_t^p + E_t^T) / 2.13 \text{ ppm by volume CO2}, $$

where 280 ppm by volume CO2 (596.4 GtC) is the IPCC figure for the pre-industrial stock of atmospheric carbon and 376.5 ppm by volume CO2 is the initial stock of atmospheric carbon.\(^6\)

Fossil fuel depletion follows from:

$$ S_{t+1} = S_t - F_t, \quad S_0 = 4000 \text{ GtC}, $$

where S_t denotes the stock of fossil fuel reserves at the start of period t and initially this is 4000 GtC.

\(^6\) We abstract from a lag between temperature and atmospheric carbon stock to facilitate comparison with Golosov et al. (2013), but appendix A discusses how our analysis is modified with such a lag. The numerical results are discussed in section 5.3.
Nordhaus (2008) supposes that with global warming of 2.5°C damages are 1.7% of world GDP and uses this for purposes of his DICE-07 model to calibrate the following function for the fraction of output what is left after damages from global warming:

\[
Z(T) = \frac{1}{1 + 0.00284T^2} = \frac{1}{1 + (T/18.8)^2}.
\]

The solid blue line in fig. 1 plots net output after damages (5) after substituting the temperature module (3).

After substituting (3) in (5), Golosov et al. (2013) get the approximate reduced-form net output function

\[
Z(E_t) \approx \exp\left[-2.379 \times 10^{-5} (2.13E_t - 581)\right].
\]

Comparing the dotted red and solid blue lines in fig. 1 indicates that this fit to the Nordhaus (2008) damages summarized in (5) fits reasonably well for small degrees of global warming from the present, but at higher degrees of global warming this approximation fits badly and is much too optimistic about global warming damages.\(^7\)

Figure 1: What is left of output after damages from global warming

Golosov et al. (2013) use a Cobb-Douglas production function with negative exponential damages:

\[
Y_t = Z(E_t) AK_t^\alpha F_t^\beta = \exp[-\gamma(2.13E_t - 581)]AK_t^\alpha F_t^\beta, \quad \gamma = 2.379 \times 10^{-5},
\]

where \(K_t\) is the capital stock at the start of period \(t\), \(A\) is the calibrated total factor productivity (including the contribution of fixed factors such as labour and land), \(\alpha\) is the share of capital

\(^7\) This negative exponential approximation (the red line in fig 1) is chosen purely for mathematical convenience. The linear approximation \(Z(E_t) = 1.0435 - 0.0001 E_t\) yields a much better fit to the blue line, also at higher temperatures and carbon stocks \((R^2 = 0.9994)\).
in value added, and β is the share of energy in value added. Apart from (1), (2) and (6), Golosov et al. (2013) assume logarithmic utility, 100% depreciation of manmade capital each period, zero fossil fuel extraction costs and thus full exhaustion of initial fossil fuel reserves. With these bold assumptions one can show that the social cost of carbon or the optimal carbon tax is a constant fraction of world GDP:

$$\tau_G = 1000\gamma \left[\frac{\phi_L}{1 - (1 + \rho)^{-1}} + \frac{(1 - \phi_L)\phi_L}{1 - (1 - \phi_L)(1 + \rho)^{-1}} \right] Y = \left[\frac{0.004758}{1 - (1 + \rho)^{-1}} + \frac{0.007481}{1 - 0.9772(1 + \rho)^{-1}} \right] Y,$$

where $\rho > 0$ is the rate of time preference (see equation (18’) below). Decadal world GDP is 630 US$ trillion in 2010, so that using a discount rate of 10% per decade (or 0.96% per year), $\rho = 0.1$, we get for 2010 a social cost of carbon of 75 US$/tC. This estimate is lower if society is less patient. The beauty of (7) is that no detailed integrated assessment model of growth and climate change is needed. The carbon tax follows directly from the rate of time preference ρ, world GDP and some technical damage and carbon cycle parameters. Formula (7) breaks down if intergenerational inequality aversion or factor substitution differs from unity, extraction costs are non-zero (especially if they are stock dependent) and the bad fit of the exponential approximation of (5) plays up. We will therefore investigate the robustness of this formula for the optimal carbon tax in a general integrated assessment model of Ramsey growth and climate change.

Improved damage function

These net output functions are in any case not very helpful, since Weitzman (2010) argues that global warming damages rise more rapidly at higher levels of mean global temperature than suggested by (5). With output damages equal to 50% of world GDP at 6°C and 99% at 12.5°C, Ackerman and Stanton (2012) calibrate what is left of output after global warming damages as:

$$Z(T) = \frac{1}{1 + (T / 20.2)^3 + (T / 6.08)^{6.76}}.$$

The extra term in the denominator captures potentially catastrophic losses at high temperatures. The dashed green line in fig. 1 plots net output (8) against the stock of atmospheric carbon. Equations (1)-(4) and (5) or (8) give a mapping from fossil fuel depletion to mean global warming and thus to production damages. Equation (5) can be replaced by

$$Z(E_t) = \exp\left[-2.379 \times 10^{-5} (2.13E_t - 581)\right]$$

as done by Golosov et al. (2013), but this is not a
good fit and does not capture the relative high damages at high levels of warming. Our preferred specification is therefore (8). We allow for multiplicative and additive damages and thus net output is \(\xi Z(T_t)H_t + (1 - \xi)Z(T_t)H_0 \), where \(H_t \) is output before damages produced in period \(t \) and \(\xi \) is 1 for multiplicative and 0 for additive global warming damages.

3. An integrated assessment model of Ramsey growth and climate change

The social planner's objective is to maximize the following utilitarian social welfare function:

\[
(9) \quad \sum_{t=0}^{\infty} (1 + \rho)^{-t} L_t U_t(C_t / L_t) = \sum_{t=0}^{\infty} (1 + \rho)^{-t} L_t \left[\frac{(C_t / L_t)^{1-\eta}}{1-1/\eta} - 1 \right].
\]

Here \(L_t \) denotes the size of the world population, which has an exogenous growth profile, \(C_t \) is aggregate consumption, \(U \) is the instantaneous CES utility function, \(\rho > 0 \) is the rate of pure time preference and \(\eta > 1 \) is the elasticity of intertemporal substitution. The ethics of climate policy depend on how much weight is given on the welfare of future generations (and thus on how small \(\rho \) is) and on how small intergenerational inequality aversion is or how easy it is to substitute current for future consumption per head (i.e., on how low \(1/\eta \) is). The most ambitious climate policies result if society has a low rate of time preference and little inequality aversion (low \(\rho \), high \(\eta \)).

Optimal climate policy takes place under a number of constraints in the form of a set of difference equations governing the global economy. First, output at time \(t \), \(Y_t \), is produced using three inputs: manmade capital \(K_t \), labour, \(L_t \), and energy. Two types of energy are used: renewables \(R_t \), such as solar and wind energy, and fossil fuels like oil, natural gas and coal, \(F_t \). Besides these three inputs the mean global mean temperature or the concentration of atmospheric carbon plays a role, through the damages that are caused by climate change. The production function \(H(.) \) has constant returns to scale, is concave and satisfies the usual Inada conditions. Renewables are subject to learning and decreases with cumulated past production \(B_t \), so \(b' < 0 \). Fossil fuel extraction cost is stock dependent, so total extraction cost at time \(t \) is \(G(S_t)F_t \), with \(S_t \), the existing stock of fossil fuel and \(G \) a monotonically decreasing function. Hence, extraction becomes more costly as the less accessible fields have to be explored. We also allow for technical progress and population growth.
What is left of production after covering the cost of resource use is allocated to consumption C, investments in manmade capital $K_{t+1} - K_t$, depreciation δK_t with a constant rate of depreciation δ.

$$(10) \quad K_{t+1} = (1-\delta)K_t + \xi Z(T_t)H(K_t, I_t, F_t) + R_t + (1-\xi)Z(T_t)H_0 - G(S_t)F_t - b(B_t)R_t - C_t,$$

where damages follow from (8) and temperature from (3). The initial stock of capital K_0 is given. The development of the permanent and transient parts of the atmospheric carbon stocks follows from (1) and (2). The development of the fossil fuel stock is given by (4) and the development of the knowledge stock for renewable use is given by:

$$(11) \quad B_{t+1} = B_t + R_t, \quad B_0 = 0.$$

Current technological options favour fossil energy use; complete decarbonisation of the world economy requires substantial reductions in the cost of the use of renewables versus that of fossil fuel. Apart from carbon taxes technological progress is an important factor in determining the optimal combination of fossil and renewable energy sources as highlighted in recent contributions by Acemoglu et al. (2012) and Mattauch et al. (2012). We thus capture the importance of learning and lock-in effects by making the cost of renewables a decreasing function of past cumulated renewable energy production, $b' < 0$ with $B_t = \sum_{s=0}^t R_s$.

The adjoined Lagrangian for our model of Ramsey growth and climate change reads as follows:

$$L \equiv \sum_{t=0}^{\infty} (1 + \rho)^{-t}\left[\lambda U_t(C_t, I_t) - \mu^S_t(S_{t+1} - S_t + F_t) - \mu^B_t(B_{t+1} - B_t - R_t)\right] +$$

$$+ \sum_{t=0}^{\infty} (1 + \rho)^{-t}\left[\mu_{t}^{PE}(E_t^p - E^p_t - \varphi_L F_t) + \mu_{t}^{TE}[E_t^T - (1-\varphi)E^T_t - \varphi_0(1-\varphi_L)F_t]\right] -$$

$$- \sum_{t=0}^{\infty} (1 + \rho)^{-t} \lambda_t \left[K_{t+1} - (1-\delta)K_t - Z(E_t^p + E^T_t)\right] \le \lambda_t \left\{H(K_t, I_t, F_t) + (1-\xi)H_0\right\} + G(S_t)F_t + b(B_t)R_t + C_t,$$

where μ^S_t denotes the shadow value of in-situ fossil fuel, μ^B_t the shadow value of learning by doing, μ_{t}^{PE} and μ_{t}^{TE} the shadow disvalue of the permanent and transient stocks of atmospheric carbon, and λ_t the shadow value of manmade capital. Necessary conditions for a social optimum are:

$$U'(C_t, I_t) = (C_t, I_t)^{-1/\eta} = \lambda_t,$$

$$(12b) \quad \xi Z H_{F_t+R} \le G(S_t) + [\mu^S_t + \varphi_L \mu_{t}^{PE} + \varphi_0(1-\varphi_L)\mu_{t}^{TE}] / \lambda_t, \quad F_t \ge 0, \text{ c.s.},$$
Equations (12a) and (12d) give the Euler equation for the growth in consumption per capita as an increasing function of the return on capital and decreasing function of the rate of time preference:

\[
\frac{C_{t+1}}{C_t} = \left(\frac{1 + r_{t+1}}{1 + \rho}\right)\eta, \quad r_{t+1} = \xi Z_{t+1} H_{K_{t+1}} - \delta.
\]

The effect of the social return on capital \((r_{t+1})\) on per-capita consumption growth is stronger if the elasticity of intertemporal substitution \((\eta)\) is high or intergenerational inequality aversion \((1/\eta)\) small.

Equation (12b) implies that, if fossil fuel is used, its marginal product should equal its marginal extraction cost (i.e., \(G(S_t)\)) plus its scarcity rent (defined as \(\theta^S_t = \mu^S_t / \lambda_t\)) plus the social cost of carbon (\(\theta^C_t = \phi_t \mu^P_t + \phi_t (1 - \phi_t) \mu^T_t / \lambda_t\)). The scarcity rent and the social cost of carbon are defined in units of final goods (not utility units). If fossil fuel is not used, its marginal product is below the total marginal cost (extraction cost plus scarcity rent plus social cost of carbon). Equation (12c) states that, if the renewable is used, its marginal product must equal its marginal cost (i.e., \(b(B_t)\)) minus the social benefit of learning by doing (defined by \(\theta^B_t = \mu^B_t / \lambda_t\), again in units of final goods). Hence, we have:

\[
(14a) \quad \xi Z_{t+1} H_{K_{t+1}} \leq G(S_t) + \theta^S_t + \theta^C_t, \quad F_t \geq 0, \quad \text{c.s.},
\]

\[
(14b) \quad \xi Z_{t+1} H_{K_{t+1}} \leq b(B_t) - \theta^B_t, \quad F_t \geq 0, \quad \text{c.s.}
\]

The dynamics of the scarcity rent follows from (12e) and (12d) and yields the Hotelling rule:
where the compound discount factors are \(\Delta_{t+s} = \prod_{i=0}^{t} (1 + r_{t+i+s})^{-1}, s \geq 0 \). Hence, the scarcity rent of keeping an extra unit of fossil fuel unexploited must equal the present discounted value of all future reductions in fossil fuel extraction costs.

The dynamics of the social benefit of learning by doing follows from (12f) and (12d) and gives the social benefit of using an additional unit of the renewable as the present discounted value of all future learning-by-doing reductions in the cost of the renewable:

\[
\theta_{t+1}^B = (1 + r_{t+1}) \theta_{t+i}^B + b' (B_{t+i}) R_{t+i} \quad \text{or} \quad \theta_{t+i}^B = -\sum_{s=0}^{\infty} [b' (B_{t+i+s}) R_{t+i,s} \Delta_{t+i,s}].
\]

Finally, defining \(\theta_{t+i}^{PE} = \mu_{t+i}^{PE} / \lambda_i \) and \(\theta_{t+i}^{TE} = \mu_{t+i}^{TE} / \lambda_i \) we use (12g), (12h) and (12d) to get:

\[
\begin{align*}
(17a) \quad & \theta_{t+i}^{PE} = (1 + r_{t+i}) \theta_{t+i}^{PE} + Z (E_{t+i}^P + E_{t+i}^T) \{ \xi H_{t+i} + (1 - \xi) H_0 \}, \\
(17b) \quad & (1 - \phi) \theta_{t+i}^{TE} = (1 + r_{t+i}) \theta_{t+i}^{TE} + Z (E_{t+i}^P + E_{t+i}^T) \{ \xi H_{t+i} + (1 - \xi) H_0 \}.
\end{align*}
\]

Solving (17) we get the social cost of carbon, \(\theta_{t+i}^E = \phi_0 \theta_{t+i}^{PE} + \phi_0 (1 - \phi_0) \theta_{t+i}^{TE} \), as the present discounted value of all future marginal global warming damages from burning an additional unit of fossil fuel:

\[
\begin{align*}
(18) \quad & \theta_{t+i}^E = -\sum_{s=0}^{\infty} \left\{ \phi_L + \phi_0 (1 - \phi_0) (1 - \phi)^s \right\} \Delta_{t+i,s} Z (E_{t+i,s}^P + E_{t+i,s}^T) \{ \xi H_{t+i,s} + (1 - \xi) H_0 \}.
\end{align*}
\]

The social cost of carbon (18) takes into account that one unit of carbon released from burning fossil fuel affects the economy in two ways: the first part remains in the atmosphere for ever and the second part gradually decays over time at a rate corresponding to roughly 1/300 per year.

Golosov et al. (2013) suppose that damages are multiplicative (\(\xi = 1 \)), net output given by (6) and that aggregate consumption and GDP grow at the rate of interest (from the assumptions that the utility function is logarithmic, the production function is Cobb-Douglas, depreciation is 100% each period and fossil fuel extraction costs are zero). Under these assumptions it follows from (18) that the social cost of carbon at the social optimum is proportional to global GDP (cf. equation (7)):

\[
(18') \quad \theta_{t+i}^{E, Golosov c.s.} = 2.379 \times 10^{-5} \left[\frac{1 + \rho}{\rho} \varphi_L + \left(1 + \frac{\rho}{\rho + \phi} \right) \phi_0 (1 - \phi_L) \right] Z (E_{t+i}^P + E_{t+i}^T) H (K_i, L_i, F_i + R_i).
\]
Policy scenarios

There are two externalities in our model stemming from missing markets for carbon permits and the benefits of learning in producing the renewable. With lump-sum taxes and subsidies the social optimum can be realized in the market economy with a specific carbon tax τ_t which is set to the social cost of carbon (18) and a renewable subsidy ν_t set to the social benefit of learning by doing in using the renewable (17). Under “laissez-faire” neither the climate nor the learning-by-doing externality are corrected, which is the no-policy scenario, $\tau_t = \nu_t = 0$.

We also consider two market scenarios with partial policy intervention. The first one is where the benefits of learning to use the renewable is internalized but the social cost of carbon is not, so that the optimal renewable subsidy is given by $\nu_t = \theta_t^E$ and the carbon tax τ_t is set to zero (and thus equations (17) and (18) are irrelevant). In this case no international climate agreement can be reached but national governments move ahead using subsidies (e.g. feed-in tariffs) to stimulate cost reduction in the production of renewable energy. The second market scenario is where the social cost of carbon is internalized but learning to use the renewable is not, so that $\tau_t = \theta_t^E$ and the optimal renewable subsidy is zero (and thus equation (16) is irrelevant).

If initially renewable energy sources are not competitive, it is optimal to start with an initial phase with only fossil fuel use. After some time renewable sources are phased in and the intermediate phase with simultaneous use of fossil fuel and the renewable commences. After some more time fossil fuel is phased out and the final carbon-free era starts. Since fossil fuel extraction costs become infinitely large as reserves are exhausted, fossil fuel reserves will not be fully exhausted and thus some fossil fuel will be left untapped in the crust of the earth at the end of the intermediate phase. From that moment on the in-situ stock of fossil fuel will remain unchanged, but the carbon in the atmosphere will gradually decay leaving ultimately only the permanent component of the carbon stock.

During the initial phase fossil fuel demand follows from setting its marginal product, $\xi Z_t H_{F_t}$, to the sum of extraction cost, scarcity rent and carbon tax, $G(S_t) + \mu_t + \tau_t$. During the intermediate phase fossil fuel and renewable demand follow from $\xi Z_t H_{F_t+R_t} = G(S_t) + \mu_t + \tau_t = b(B_t) - \nu_t$. Since fossil fuel and the renewable are perfect substitutes, simultaneous use is not feasible if there is no learning by doing, no renewable
subsidy and no carbon tax except possibly for a single period of time. However, learning by doing introduces convexity in the production cost of the renewable so it is possible that an intermediate phase with simultaneous use emerges. During the final phase we have

\[\xi Z_t H_R = b(B_t) - \nu_t, \]

which gives renewable use as an increasing function of capital, the stock of renewable knowledge and the renewable subsidy and as a decreasing function of global mean temperature or the concentration of carbon in the atmosphere.

One of our main objectives is to study the optimal timing of transitions from introducing the renewable alongside fossil fuel and from phasing out fossil fuel altogether because in most of the prevailing integrated assessment models these transitions are exogenous or ad hoc. We are interested in how the timing of these transitions is affected by different policy mixes; for example, by how much carbon taxes and renewable subsidies bring forward the carbon-free era. The stock of fossil fuel to leave untapped in the earth at the end of the intermediate phase follows from the condition that the economy is indifferent between fossil fuel and the renewable and that the scarcity rent has vanished:

\[G(S_t) + \tau_t < b(B_t) - \nu_t, \quad 0 \leq t < t_{CF}. \quad \text{and} \quad G(S_t) + \tau_t \geq b(B_t) - \nu_t, \quad S_t = S_{t_{CF}}, \quad \forall t \geq t_{CF}. \]

where \(t_{CF} \) is the time at which the economy for the first time relies on using only the renewable. The amount of fossil fuel to be left in situ increases in the renewable subsidy and the carbon tax.

4. Policy simulation and optimization

In our numerical simulations time runs from 2010 till 2600 and is measured in decades, \(t=1,2,\ldots, 60 \), so period 1 corresponds to 2010-2020, period 2 to 2020-2030, etc. The final time period is \(T = 60 \) or 2600-2610, but we highlight the transitional dynamics in the earlier parts of the simulation. The functional form and calibration of the carbon cycle, temperature module and global warming damages have been discussed in section 2. The functional forms and benchmark parameter values for the economic part of our integrated assessment model of growth and climate change are discussed in appendix B. On the whole our benchmark parameter values assume relatively low damages, low fossil fuel extraction cost and a high cost for renewable energy. This biases our model toward fossil fuel use. The reported

8 If it were fossil fuel extraction cost would rise and thus the scarcity rent would have to fall which cannot be so.
Simulations use the Leontief production function (with elasticity of substitution between energy and the capital-labour aggregate equal to $\vartheta = 0$) and multiplicative damages ($\xi = 1$). Appendix C shows how these benchmarks policy simulations are affected by CES technology ($\vartheta = 0.5$).

We report in tables 2 and 3 and fig. 2 results for the following policy simulations (also summarized in table 1): the first-best outcome with an optimal carbon tax (18) and an optimal renewable subsidy (16) (indicated by blue, solid line in fig. 2); a market outcome with no climate agreement but an optimal subsidy to internalize the learning-by-doing externality such as a feed-in tariff (blue, dashed); a market outcome with an international agreement imposing an optimal carbon tax to internalize the climate externality but no renewable subsidy (orange, solid); and a no-policy outcome with neither a carbon tax nor a renewable subsidy (orange, dashed). Two further policy scenarios implement the proportional carbon tax (18’) of Golosov et al. (2013) to correct the climate externality in a market economy without internalizing the learning-by-doing externality in renewable use (orange, dotted) and with this the learning externality internalized with the aid of a renewable subsidy (blue, dotted).

Table 1: Policy Scenarios

<table>
<thead>
<tr>
<th>Renewable subsidy, θ</th>
<th>Carbon tax, τ</th>
<th>Proportional to GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>only carbon tax</td>
<td>only proportional carbon tax</td>
</tr>
<tr>
<td>θ^p</td>
<td>only subsidy</td>
<td>first-best optimum</td>
</tr>
</tbody>
</table>

Section 4.1 discusses the benchmark results by comparing the social optimum with the no-policy scenario, concluding that the carbon tax and a renewable subsidy lead to quicker transition towards the carbon-free era and more fossil fuel left untapped. We also show how well the scenarios with only one market failure (imposing either the optimal renewable subsidy or the optimal carbon tax) fare. In section 4.2 we explain the different phases of the market price of fossil fuel and the renewable in the various scenarios. We then explore in section 4.3 the sources of the large welfare losses under “laissez faire” in detail. We also compare in section 4.4 our fully optimal carbon tax with the simple formula (18’) suggested by Golosov et al. (2013) and conclude that (18’) is not a good approximation to the fully optimal carbon tax and fails to cope with multiple market failures.
4.1. How to transition more quickly to the carbon-free era and leave more fossil fuel untapped

Fig. 2 compares the first-best outcomes with a Leontief technology with the no-policy scenario. We then compare cases of imperfect policy where only one of the two market failures is corrected. The first three panels show aggregate consumption, world GDP (net output net of global warming damages) and the aggregate capital stock. Under first-best optimal policy (blue, solid) consumption, GDP and the capital stock are monotonically increasing over the entire period of time under consideration. The transition to renewable energy takes place smoothly as soon as 2030 and fossil energy is phased out completely by 2050. Over this period 400 GtC are burnt, so most of the 4000 GtC of fossil fuel reserves are abandoned. This leads to a maximum increase in temperature of 2.3°C corresponding to an atmospheric carbon stock of 1015 GtC and slight overshooting of the 2°C warming limit corresponding to a carbon stock of 947 GtC (from (3)). This rapid and unambiguous first-best transformation towards a carbon-free economy is achieved through the implementation of a carbon tax and a renewable subsidy policy. Both follow an inverted U-shaped time profile. The global carbon tax is set to the social cost of carbon which starts at a level of 95 $/tC and reaches a maximum of 560 $/tC in the year 2170 long after the transition to renewable energy has occurred. The renewable subsidy starts at 160 $/tC and rises to 380 $/tC in the year 2030 and rapidly falls to zero as all learning has taken place by the end of this century. The optimal policy mix, therefore, combines an aggressive subsidy to phase in renewable energy quite early and a carbon tax which gradually rises (and falls) to price fossil energy out of the market once renewable energy sources are competitive.

Table 2: Transition times and carbon budget

<table>
<thead>
<tr>
<th></th>
<th>Only fossil fuel</th>
<th>Simultaneous use</th>
<th>Renewable Only</th>
<th>Carbon used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social optimum</td>
<td>2010-2020</td>
<td>2030-2040</td>
<td>2050 –</td>
<td>400 GtC</td>
</tr>
<tr>
<td>Carbon tax only</td>
<td>2010-2050</td>
<td>x</td>
<td>2060 –</td>
<td>730 GtC</td>
</tr>
<tr>
<td>Renewable subsidy only</td>
<td>2010-2050</td>
<td>2060-2080</td>
<td>2090 –</td>
<td>1250 GtC</td>
</tr>
<tr>
<td>No policy</td>
<td>2010-2110</td>
<td>x</td>
<td>2120 –</td>
<td>2510 GtC</td>
</tr>
</tbody>
</table>

In the no-policy or “laissez faire” scenario (orange, dashed) both externalities remain uncorrected: no international agreements are reached and no subsidy scheme implemented. As a result the economy uses much more fossil fuel, 2510 GtC in total, so much less fossil fuel is left in the crust of the earth. Global mean temperature increases by a maximum of 5.3°C matching recent IPCC and IEA estimates for business as usual. The transition to renewable
energy occurs much later, in 2120, and abruptly. This is due to the fact that the benefits of renewable energy production in terms of climate change mitigation and learning-by-doing are not taken into account; hence the potential reductions in the cost of renewable production are not recognized and take longer to materialize. These inefficiencies (see section 5.2 for more detail) cause a converted welfare loss of 73% of today’s world GDP.

Table 3: Social costs of carbon, renewable subsidies, and welfare losses

<table>
<thead>
<tr>
<th>Policy Case</th>
<th>Welfare Loss (% of GDP)</th>
<th>Maximum carbon tax τ ($/tC)</th>
<th>Maximum renewable subsidy ($/tC)</th>
<th>max T (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social optimum</td>
<td></td>
<td>560 $/tC</td>
<td>380 $/tC</td>
<td>2.3 °C</td>
</tr>
<tr>
<td>Carbon tax only</td>
<td>-3%</td>
<td>830 $/tC</td>
<td></td>
<td>2.9 °C</td>
</tr>
<tr>
<td>Renewable subsidy only</td>
<td>-10%</td>
<td></td>
<td>550 $/tC</td>
<td>3.7 °C</td>
</tr>
<tr>
<td>No policy</td>
<td>-73%</td>
<td></td>
<td></td>
<td>5.3 °C</td>
</tr>
</tbody>
</table>

We also consider the cases where policy makers internalize only one of the two externalities (reaching a global agreement on climate policy or introducing a scheme subsidizing renewable energy). Failing to reach an international climate agreement and implementing only a subsidy to encourage learning by doing up to a rather higher level of 550 $/GtC is insufficient to bring forward the transition to renewable energy and to avoid severe climate change. This ‘renewable subsidy only’ case performs better than “laissez faire” in terms of welfare and environmental outcomes but temperature rises by as much as 3.7°C above pre-industrial levels and 1250 GtC are used in total (half of the no-policy case but still three times the optimal amount). Subsidizing renewable energy production induces simultaneous use of renewable along with fossil energy sources as early as 2060 with a complete transition by 2090. The presence of the climate externality, however, still lowers welfare by 10% compared to the social optimum. Interestingly, there are no Green Paradox effects as fossil fuel use is not increased in anticipation of fossil fuel being made less competitive relative to the renewable energy, since we have a Leontief production function with zero substitution between energy and the labour-capital composite. However, there are significant Green Paradox effects once these two inputs are substitutes (see blue and orange dashed lines in fossil fuel use panel in fig. C.1). Owners of fossil fuel deposits deplete their reserves more rapidly to avoid them becoming obsolete as they realize that renewables will become cheaper in the future.
Figure 2: Benchmark policy simulations

Consumption, C_t

Output after Damage, Y_t

Capital Stock, K_t

Mean Global Temperature, T_t

Fossil Fuel Use, F_t

Renewable Energy Use, R_t

Social Cost of Carbon, τ_t

Subsidy for Renewable Energy, ν_t

Key: no policy (—), carbon tax only (—), proportional carbon tax only (——), renewable subsidy only (—), social optimum (——), prop. tax & optimal subsidy (-----)
The implementation of a climate policy by establishing carbon markets, taxing emissions, or direct control but ignoring the learning externality (see the orange, solid lines) is more effective in avoiding climate change and increasing welfare than the provision of a subsidy for renewables. The carbon tax rises to a much higher level of 830$/tC than the first-best carbon tax. A carbon tax ends fossil fuel use by 2060 but does this abruptly as the learning externality is still not recognized. This policy effectively limits global warming to 2.9°C and carbon use to 730 GtC. The inefficiency of the learning externality is minor in that not internalizing it only lowers welfare by 3%. The comparison of welfare indicators across partial policy scenarios gives further credence to the assessment of Stern (2007) that climate change is the biggest externality our planet faces and leads us to conclude that policy makers should prioritize climate negotiations over renewable policy. If such negotiations fail, e.g., due to insurmountable free-riding problems associated with international treaties, (national) renewable subsidies are yet a relatively efficient instrument to avert the most severe aspects of global warming.

4.2. Time paths for the market price of fossil fuel and the renewable in the various scenarios

Market prices for both types of fossil and renewable energy are depicted in fig. 3. Regular lines depict prices of fuels in use, faint lines prices of fuels not in use. The price of fossil energy consists of the sum of marginal extraction cost and the Hotelling rent plus any carbon tax. The market price of renewable energy is set to its production cost minus any learning subsidy. Initially prices are rising in all scenarios and only on these rising sections are fossil fuels used. A subsidy for renewable energy enables a period of simultaneous use (indicated by boxed sections) and smooths the transition to the carbon-free era.
First, consider the no-policy scenario (orange, dashed) where the carbon tax and the subsidy are set to zero. The market cost of renewable energy is above the market price of fossil energy and constant in the absence of any production and/or subsidy. The market price of fossil fuel is non-monotonic despite strictly rising extraction costs due to the non-linear path of the Hotelling rent: the Hotelling rent increases initially but soon starts to fall as the benefit of keeping carbon in situ drops to zero. The falling Hotelling rent compensates some of the increases in production costs, leading to a flattening of the market price of fossil fuel over several decades below the cost of renewables (see dashed, orange hump in fig. 3). However, as production costs of fossil energy rise beyond those of renewable energy, prices spike and renewable sources take over all of energy production. After this switch point, the cost of fossil energy remains constant (coloured in faint orange as not in use). The cost of producing the renewable decreases quickly and approaches its lower floor due to learning by doing. This scenario is clearly sub-optimal, since renewables are too expensive for much too long relative to fossil fuel.

Next, consider the case where only the climate externality is internalized using a carbon tax (orange, solid). Adding the social cost of carbon to the price of fossil energy increases its initial price and its growth rate significantly. It surpasses the market price of renewable energy much earlier but the transition to the carbon-free era is still abrupt with a price spike in 2050 as the learning-by-doing externality is still not recognized.
If instead of the carbon tax, a subsidy is introduced (dark blue, dashed), the market price of energy falls below its “laissez-faire” level since fossil fuel owners fear that their resources will be worth less in the future. Lower market prices potentially stimulate higher fossil fuel use, faster extraction of fossil fuel, and acceleration of global warming; a phenomenon coined the Green Paradox by Sinn (2008). Our baseline simulations do not allow substitution between energy and the capital-labour composite and we do not find a Green Paradox here. Appendix C presents the same scenarios with a positive elasticity of substitution and lower market prices for fossil energy induce a significant increase in fossil energy use compared to the no policy scenario there (see fossil fuel panel in fig. C.1). The subsidy policy lowers the market price of renewable energy to allow for simultaneous use (indicated by boxed sections). Once renewable energy is brought into use, its price rises with that of fossil energy. The market price of renewable energy starts declining only as the transition to carbon-free energy is complete.

To implement the social optimum (dark blue, solid) a carbon tax needs to be added to the renewable subsidy. The carbon tax on fossil energy increases the price if fossil energy beyond its “laissez-faire” level. This lowers the required subsidy for renewable energy and brings forward the switch points to simultaneous use and to full renewable energy use.\(^9\)

4.3. No policy leads to costly overinvestment in dirty and underinvestment in clean and green capital

How does the no-policy scenario differ from the social optimum? Initially, output, consumption and capital accumulation take place at very similar levels. However, the impacts of the climate and learning externalities are large enough to drastically change accumulation paths as global temperatures rise. This is also reflected in total welfare which is about 73% lower in the no policy case.

\(^9\) If the social cost of carbon is added to the production cost of fossil fuel, the price of fossil energy continues to rise even as no fossil energy is produced (see the faint solid orange and dark blue lines). The social cost of carbon rises initially, because decay is limited and consumption is increasing. This yields a smaller marginal utility of consumption and thus a higher social cost of carbon, expressed in the numeraire (see equation (18)). However, after some point of time decay of atmospheric carbon dominates the decrease in marginal utility of consumption and the social cost of carbon – and with it the market price of fossil energy – start to fall. If the fall is sufficiently large, fossil energy can become competitive again. As fig. 3 indicates, the time horizon that we consider is too short and the learning-based reduction in renewable costs too large to make such re-switching optimal. A carbon tax proportional to GDP or consumption does not permit this economically sensible re-switching unless a major shock weakens the capital endowment or technological knowledge in the economy.
“Laissez-faire” leads to inefficient allocation of resources, because economic decision makers do not recognize the deleterious effects of greenhouse gas emissions. Private and social cost calculations diverge; agents overvalue the returns to conventional capital accumulation and undervalue investments in green energy sources. Failure to cooperate induces excessive fossil fuel extraction and capital accumulation leading to high global warming damages over the time horizon. This inefficient use of resources lowers welfare because it keeps consumption low in early periods of the program to allow for capital accumulation and consumption low in future periods due to high global warming damages. Damages in the no-policy scenario are large enough to lower factor returns sufficiently to induce decumulation of capital and a fall in consumption. From 2110-2140 the capital stock falls by 33% from a peak of $1070 trillion to a trough $725 trillion, consumption drops by 17% from a peak of $1375 trillion to a trough of $1150 trillion. This climate crisis is ended as extraction costs rise above the cost of renewable energy production. At this point all of energy use is sourced from renewables and the climate and the economy recover from previous excessive use of fossil fuels. The inefficiency of this scenario is also reflected in the high share of GDP expended on energy which rises from around 6% in 2010 to 16% in 2110. Once the economy switches to the renewable and stocks of atmospheric carbon recede, the return to capital and the interest rate increase. This leads to a resumption of global growth. As only a fraction of carbon dissipates, welfare will remain below the social optimum even in the steady state.10

Introduction of a renewable subsidy to internalize positive effects of learning ameliorates the climate externality. Since the climate externality is still not recognized, the subsidy rises to compensate for the missing climate policy. By encouraging the usage of renewable energy, the subsidy reduces the carbon content of energy. This leads to more fossil fuel being locked up in situ and lower accumulation of carbon in the atmosphere, and allows higher consumption levels relative to no-policy laissez-faire. Since there is less underinvestment in clean energy, the welfare loss is curbed to 10% of current GDP.

Close inspection shows that consumption in the social optimum is the lowest for some initial periods. This implies that internalization of the climate externality would have to be phased in.

10 Rezai et al. (2012) discuss this mechanism in more detail and demonstrate the important implications of this inefficiency for the debate on the (opportunity) cost of climate change in a simple model of Leontief production technology and unlimited stocks of fossil energy.
more slowly as would be the case with a higher coefficient of intergenerational inequality aversion (lower η).

4.4. The optimal carbon tax is not proportional to aggregate consumption or world GDP

To examine whether the linear formula for the optimal carbon tax (7) or (18') put forward by Golosov et al. (2013) holds up in a more general integrated assessment model of Ramsey growth and climate change, fig. 4 plots the ratio of the optimal carbon tax to both world GDP and aggregate consumption; dotted lines in fig. 2 provide further details. We immediately see that the optimal carbon tax (dark blue line) is not well described by a constant proportion of world GDP or aggregate consumption. The general pattern is that during the initial phases of fossil fuel use the social cost of carbon rises as a proportion of world GDP as more carbon emissions raise marginal damages of global warming and during the carbon-free phases the social cost of carbon falls as a proportion of world GDP as a significant part of the stock of carbon in the atmosphere is gradually returned to the surface of the oceans and the earth. In the next section we demonstrate that setting the carbon tax a constant proportion of world GDP is a poor approximation to the optimal carbon tax regardless of whether global warming damages are multiplicative or additive damages, of whether the elasticity of factor substitution is zero (Leontief) or a half (CES), and of whether the elasticity of intertemporal substitution is high or low. Without an optimal subsidy to compensate for the non-optimal carbon tax, the rule is unable to avert significant climate change. The reason is that, as the economy suffers from a climate crisis, output falls and with it the proportional carbon tax. Yet, the social cost of carbon increases.

The dotted lines in fig. 2 show the aggregate outcomes if we put the proportional carbon tax suggested by Golosov et al. (2013) into our integrated assessment model either with or without the optimal renewable subsidy policy present (dotted blue and dotted orange lines, respectively). This proportional tax internalizes part of the social cost of carbon and improves welfare relative to no policy. A carbon tax proportional to GDP increases the price of fossil fuel and encourages a transition to renewable energy earlier on. This is particularly true if climate change is the only market failure in the economy and the subsidy is set optimally.

11 Alternatively, the social optimum might have to be abandoned and instead one has to devise second-best intergenerational compensation schemes for policy to increase consumption in all periods. See Karp and Rezai (2013) and Karp (2013) for the problems with identifying generations in Ramsey models and for a discussion of intergenerational discounting and the effects of environmental policy in an OLG setting.
compensating the not-optimal, proportional carbon tax. Once the proportional carbon tax is supplemented with a renewable subsidy, the social optimum is matched quiet closely and the welfare loss is less than 1%.

Figure 4: The social cost of carbon as ratio of aggregate world GDP and consumption

![Graph showing social costs of carbon](image)

Key: social optimum (), carbon tax only (), carbon tax prop. to world GDP only (), proportional tax & optimal subsidy ()

The proportional carbon tax performs much worse if multiple market failures are left uncorrected in the economy. Without the renewable subsidy, emissions and the social cost of carbon are significantly higher. This pushes upward the optimal carbon tax (solid orange line in the bottom left panel of fig. 2). The carbon tax associated with the proportionality rule, however, decreases compared with the case where the subsidy is left in place (dotted dark blue and dotted orange, respectively). Whereas the maximum optimal carbon tax increases to 830 $/GtC, the maximum proportional carbon tax falls to 330 $/GtC. Such a low carbon tax fails to sufficiently spur the transition away from fossil energy, which in this scenario occurs only one decade before no-policy. The global climate warms to 4.9°C which is more than double of what is optimal and the welfare loss of such an inefficient policy is equivalent to 48% of current GDP. If the tax was set according to equation (18) rather than (18’) only 3% of current GDP would be lost. A key factor for the inefficiency of using only the proportional carbon tax is that much more carbon is used, 2160 GtC, and less fossil fuel is kept untapped in the crust of the earth than with the fully optimal carbon tax without subsidy, 730 GtC.

5. Robustness of the social cost of carbon

Fig. 5 shows the robustness of the first-best of the social optimum with respect to some other key parameters. Our general finding of an inverted-U time profile for the social cost of carbon
is robust. The exact timing and magnitude depends on specific parameters. Starting with half the initial capital stock \((K_0 = 100)\) hardly affects the social cost of carbon irrespective of whether damages are additive or multiplicative. This result arises despite the global economy being initially on a faster growth path.

Figure 5: Sensitivity analysis for the time paths of the optimal social cost of carbon

A much lower social rate of discount \((\rho = 0)\) leads to a much more ambitious climate policy with a much higher social cost of carbon, earlier phasing in of renewables and more fossil fuel left in situ. Climate policy is more ambitious with multiplicative (than with additive damages \((\xi = 0)\), because it is less easy to substitute increases in output for damages in a growing world economy. Climate policy is also more aggressive with a higher equilibrium climate sensitivity \((\omega = 6)\). A higher elasticity of intertemporal substitution corresponds to less intergenerational inequality aversion. Fig. 5 plots the utilitarian case of zero intergenerational inequality aversion \((\eta \to \infty \text{ instead of } \eta = 2 \text{ as in figs. 2-4})\). This implies that the carbon tax hurts earlier generations much more than later generations. The social planner is relatively more concerned with fighting global warming than with avoiding big differences in consumption of different generations. Increasing the substitutability between the capital-labour aggregate and energy in the CES production function leads to increased (fossil and renewable) energy use, which causes higher stocks of atmospheric carbon and a higher social cost of carbon. The possibility of substituting energy for capital increases the price sensitivity of energy demand. As explained in section 4.2, the case where there is only a renewable subsidy exhibits lower fossil energy prices than the no-policy scenario due the Green Paradox. Fossil resource owners are accepting lower prices today due to the anticipation of less demand for fossil energy in the future leading to higher fossil energy consumption today (see also appendix C).
6. Conclusion

Our main findings based on an integrated assessment model of climate change and Ramsey growth are that it is important to not only internalize the climate externality but also learning by doing in using renewables. Pricing carbon and subsidizing renewable use curbs fossil fuel use and promotes substitution away from fossil fuel towards renewables, increases untapped fossil fuel, and brings forward the carbon-free era. Our benchmark results give rise to a global carbon tax which rises from about 100$/tC initially to 275 $/tC in 2050 and a renewable subsidy which rises from 160 $/tC initially to 380 $/tC in 2030 and then falls quickly to zero. The optimal policy mix, therefore, consists of an aggressive subsidy making renewable energy competitive early on and a gradually rising carbon tax pricing fossil energy out of the market. The total amount of carbon burnt is 400 GtC which is much less than the 2510 GtC under “laissez-faire”. Consequently, the social optimum manages to limit the maximum temperature to 2.3 °C instead of 5.3 °C under “laissez-faire”. The welfare loss without policy is 73% of today’s world GDP. Climate policy becomes less ambitious in the sense that the social cost of carbon is higher, fossil fuel is abandoned less quickly and more carbon is used in total if the discount rate is higher, intergenerational inequality aversion is weaker, the equilibrium climate sensitivity is lower, and global warming damages are additive rather than multiplicative. More substitutability between energy and the capital-labour aggregate leads to more energy use especially in capital-scarce economies and more global warming. Hence, the required global carbon tax is higher.

If international agreements on cooperation in climate change mitigation cannot be reached, governments can move forward unilaterally by introducing subsidies to renewable energy. Such policy internalizes the learning externality and accelerates fossil fuel extraction and global warming as fossil fuel owners fear that their resources will be worth less in the future. The level and the duration of the subsidy policy increases compared to the social optimum to compensate for the missing carbon tax. This limits global warming to 3.7 °C and the loss in welfare to 10% relative to the social optimum. If a carbon tax is introduced instead of the subsidy, the welfare loss reduces to 3%. The comparison of welfare indicators across partial policy scenarios gives further credence to the assessment of Stern (2007) that climate change is the biggest externality our planet faces and leads us to conclude that policy makers should prioritize climate negotiations over renewable policy. If such negotiations fail, e.g., due to insurmountable free-riding problems associated with international treaties, (national)
renewable subsidies are yet a relatively efficient instrument to avert the most severe aspects of global warming.

Renewable subsidies in isolation, however, are insufficient to combat climate change. Making total factor and energy productivities also endogenous (using the empirical estimates of the determinants of growth rates given in Hassler et al., 2011) allows further substitution possibilities between energy and the capital-labour aggregate in the longer run and justifies a more ambitious climate policy. R&D subsidies should be set such that the price of renewable energy follows the (rising) price of fossil energy and need to be complemented by a carbon tax in order to avoid excessive extraction associated with the Green Paradox.

A recent interagency working group (2010) suggests that US institutions use a social cost of carbon of initially $80/tC rising to 165 $/tC in 2050 in project appraisal based on a discount rate of 3% per annum. A discount rate of 2.5% per annum would imply an initial social cost of carbon of 129 $/tC rising to 238 $/tC in 2050, which in line with our estimates. These figures are typically based on existing integrated assessment models which are often very elaborate and in which consumers rarely maximize utility as in the Ramsey model. Hence, it is not always clear what the underlying assumptions and the crucial parameters deriving the results are. Golosov et al. (2013) offer a tractable fully consistent general equilibrium model of climate change and Ramsey growth, but employ unrealistically low damages at higher temperatures and need to make some very bold assumptions to ensure that both aggregate consumption and the carbon tax are a fixed proportion of world GDP. Much too much carbon is burnt and the welfare losses are substantial with this proportional carbon tax, especially if there is no policy in place for encouraging learning by doing in renewable production.

Our model of Ramsey growth and climate change has more realistic damages and finds that the optimal carbon tax is a hump-shaped function of world GDP. Our analysis also pays careful attention to how fast and how much fossil fuel should be abandoned and how quickly and how much renewables should be phased in. Our results suggest a ‘third way’ in climate policy which consists of a quick and aggressive path of upfront renewable subsidies to stimulate use of renewables and enjoy the fruits of learning by doing, confirming the logic of direct technical change and kick-starting green innovation developed in Acemoglu et al.

12 Such models of climate change yield estimates of the social cost of carbon starting from 5 to 35 $ per ton of carbon in 2010 and rising to $16 to $50 per ton in 2050 (e.g., the DICE, PAGE and FUND models of Nordhaus (2008), Hope (2006) and Tol (2002), respectively), but the Stern Review obtains much higher estimates of the social cost of carbon with a much lower discount rate (Stern (2007)).
(2012) and Mattauch (2012), and a gradually rising carbon tax as advocated in most integrated assessment studies including Nordhaus (2008) and Stern (2007).

References

Appendix A: Derivation with a lag between carbon stock and global mean temperature

We suppose a lag between atmospheric stock of carbon and global mean temperature:

\[(3') \quad T_{t+1} = (1 - \varphi_T)T_t + \varphi_T \omega \ln \left(\frac{E_{t+1}^p + E_t^T}{581} \right),\]

where \(\varphi_T\) is the speed at which a higher stock of atmospheric carbon gets translated into a higher global mean temperature. Since it takes on average about 70 years, we set \(\varphi_T = 1.70\).

With this additional equation the Lagrangian function becomes:

\[
L = \sum_{t=0}^{\infty} (1 + \rho)^{-t} \left[L_U(c_t, l_t) - \mu^s_t (S_{t+1} - S_t + F_t) - \mu^B_t (B_{t+1} - B_t - R_t) \right] \\
- \sum_{t=0}^{\infty} (1 + \rho)^{-t} \left[\mu^T_t \left(T_{t+1} - (1 - \varphi_T)T_t - \varphi_T \omega \ln \left(\frac{E_{t+1}^p + E_t^T}{581} \right) \right) \right] \\
+ \sum_{t=0}^{\infty} (1 + \rho)^{-t} \left[\mu_t^{PE} (E_{t+1}^p - E_t^p - \varphi_t F_t) + \mu_t^{TE} \left(E_{t+1}^T - (1 - \varphi)E_t^T - \varphi_t (1 - \varphi_t)F_t \right) \right] \\
- \sum_{t=0}^{\infty} (1 + \rho)^{-t} \lambda_t \left[K_{t+1} - (1 - \delta)K_t - Z(T_t) \{ \xi H(K_t, L_t, F_t + R_t) + (1 - \xi)H_0 \} + G(S_t)F_t + b(B_t)R_t + C_t \right],
\]

where \(\mu^T_t\) is the marginal disvalue of global warming. Necessary conditions for a social optimum are (12a)-(12f) as before and:
(12g') \(\mu_{t+1}^{PE} = (1 + \rho)\mu_{t}^{PE} + \phi_{1} \sigma (E_{t+1}^{P} + E_{t+1}^{T})^{-1}\mu_{t+1}^{T}, \)

(12h') \((1 - \phi)\mu_{t+1}^{TE} = (1 + \rho)\mu_{t+1}^{TE} + \phi_{2} \sigma (E_{t+1}^{P} + E_{t+1}^{T})^{-1}\mu_{t+1}^{T}, \)
and

(12i') \((1 - \phi)\mu_{t+1}^{T} = (1 + \rho)\mu_{t}^{T} + Z(T_{t+1})\{\xi H_{t+1} + (1 - \xi)H_{0}\}\lambda_{t+1}. \)

We now get as before (13)-(16). The dynamics of the permanent and transient components of the social cost of carbon become:

\[
\theta_{t+1}^{PE} = (1 + r_{t+1})\theta_{t}^{PE} + \omega(E_{t+1}^{P} + E_{t+1}^{T})^{-1}\theta_{t+1}^{T},
\]

\[
(1 - \phi)\theta_{t+1}^{TE} = (1 + r_{t+1})\theta_{t}^{TE} + \omega(E_{t+1}^{P} + E_{t+1}^{T})^{-1}\theta_{t+1}^{T},
\]

where \(\theta_{t}^{T} \equiv \mu_{t}^{T} / \lambda_{t}. \) Solving (17') yields the social cost of carbon as the present discounted value of all future marginal damages from global warming:

\[
\theta_{t}^{C} = \sum_{s=0}^{\infty} \left(\phi_{L} + \phi_{0}(1 - \phi_{L})(1 - \phi)^{s}\right)\Delta_{t+s} \omega(E_{t+s+1}^{P} + E_{t+s+1}^{T})^{-1}\theta_{t+s+1}^{T}.
\]

Solving (12i) together with (12d) yields:

\[
(1 - \phi)\theta_{t+1}^{T} = (1 + r_{t+1})\theta_{t}^{T} + Z(T_{t+1})\{\xi H_{t+1} + (1 - \xi)H_{0}\}.
\]

This equation yields the marginal cost of global warming:

\[
\theta_{t}^{T} = -\sum_{s=0}^{\infty} (1 - \phi)^{s} \Delta_{t+s} Z(T_{t+s+1})\{\xi H_{t+s+1} + (1 - \xi)H_{0}\}.
\]

Upon substituting (A3) into (A1) we get the social cost of burning an extra unit of fossil fuel.

\[Relationship to Golosov et al. (2013) \]

Golosov et al. (2013) assume that there is no lag between an increase in the stock of atmospheric carbon and global mean temperature. Following Gerlagh and Liski (2012) we do allow for such a lag. Under this set of assumptions, (A3) shows that the marginal cost of global warming at the social optimum is proportional to global GDP (cf. equation (7)):

\[
\theta_{t}^{T} = 2.379 \times 10^{-5} \left(\frac{1 + \rho}{\rho + \phi_{T}} \right) Z(T_{t})H(K_{s},L_{s},F_{t} + R_{t}).
\]

Upon substitution of (A3') into (A1), we obtain:

\[
\theta_{t}^{C} = 2.379 \times 10^{-5} \left(\frac{1 + \rho}{\rho + \phi_{T}} \right) \sum_{s=0}^{\infty} \left(\phi_{L} + \phi_{0}(1 - \phi_{L})(1 - \phi)^{s}\right) \Delta_{t+s} \omega(E_{t+s+1}^{P} + E_{t+s+1}^{T})^{-1} Z(T_{t+s+1})H_{t+s+1}.
\]
This expression does not simplify to a simple expression depending only on current global GDP. However, if we use a dynamic reduced-form temperature module with a distributed lag between carbon stock and damages,

\[(A5) \quad Z_t = Z(E_t), \quad E_{t+1} = (1 - \varphi_T)E_t + \varphi_T(E^P_{t+1} + E^T_{t+1}),\]

we have the Lagrangian function

\[
L = \sum_{t=0}^{\infty} (1 + \rho)^{-t} \left[L_U(A_t(C_t) + L_t) - \mu^E_t (S_{t+1} - S_t + F_t) - \mu^B_t (B_{t+1} - B_t - R_t) \right] \\
- \sum_{t=0}^{\infty} (1 + \rho)^{-t} \left[\mu^E_t \left(E_{t+1} - (1 - \varphi_T)E_t - \varphi_T (E^P_{t+1} + E^E_{t+1}) \right) \right] \\
+ \sum_{t=0}^{\infty} (1 + \rho)^{-t} \left[\mu^E_t \left(E^P_{t+1} - E^P_t - \varphi_T F_t \right) + \mu^E_t \left(E^T_{t+1} - (1 - \varphi_T)E^T_t - \varphi_T (1 - \varphi_L)F_t \right) \right] \\
- \sum_{t=0}^{\infty} (1 + \rho)^{-t} \left[K_{t+1} - (1 - \delta)K_t - Z(E_t) \{ \xi H(K_t, L_t, F_t + R_t) + (1 - \xi)H_0 \} + G(S_t)F_t + b(B_t)R_t + C_t \right]
\]

and thus we get:

\[(12g^{''}) \quad \mu^P_{t+1} = (1 + \rho)(\mu^P_t + \varphi_T \mu^E_t), \]
\[(12h^{''}) \quad (1 - \varphi_T)\mu^E_{t+1} = (1 + \rho)(\mu^E_t + \varphi_T \mu^E_t), \]
\[(12i^{''}) \quad (1 - \varphi_T)\mu^E_{t+1} = (1 + \rho)\mu^E_t + Z(E_{t+1}) \{ \xi H_{t+1} + (1 - \xi)H_0 \} \lambda_{t+1}. \]

It thus follows that

\[(A6) \quad \theta^C = \sum_{t=0}^{\infty} \left[\varphi_L + \varphi_0 (1 - \varphi_L)(1 - \varphi_T)^t \right] \Delta_{t, T} \theta^E_{T+1}, \]
\[(A7) \quad \theta^E_t = -\sum_{s=0}^{\infty} \left[(1 - \varphi_T)^s \Delta_{t, T} Z(E_{t+s+1}) \{ \xi H_{t+s+1} + (1 - \xi)H_0 \} \right]. \]

Under the Golosov et al. assumptions, we get

\[(A7') \quad \theta^E_t = 2.379 \times 10^{-5} \left(\frac{1 + \rho}{\rho + \varphi_T} \right) Z(E_t)H_t \]

and thus the following simple expression for the social cost of carbon:

\[(A6') \quad \theta^C = 2.379 \times 10^{-5} \left(\frac{1 + \rho}{\rho + \varphi_T} \right) \left[\frac{1 + \rho}{\rho + \varphi} \right] \varphi_L + \left[\frac{1 + \rho}{\rho + \varphi} \right] \varphi_0 (1 - \varphi_L) \right] Z(E_t)H(K_t, L_t, F_t + R_t).

A lag between the atmospheric stock of carbon and damages \((\varphi_T > 0)\) thus pushes down the social cost of carbon so our estimates of the optimal global carbon tax will be biased upwards.
Appendix B: Functional forms and calibration

Preferences

As was already clear from (9), we suppose a CES utility function. We set the elasticity of intertemporal substitution to $\eta = \frac{1}{2}$ and thus intergenerational inequality aversion to 2. The rate of pure time preference ρ is set to 10% per decade which corresponds to 0.96% per year.

Cost of energy

We employ an extraction technology of the form $G(S) = \gamma_1 (S_0 / S)^{\gamma_2}$, where γ_1 and γ_2 are positive constants. This specification implies that reserves will not be fully be extracted; some fossil fuel remains untapped in the crust of the earth. Extraction costs are calibrated to give an initial share of energy in GDP between 5%-7% depending on the policy scenario. This translates to fossil production costs of $350/tC ($35/barrel of oil).\(^{13}\) This gives approximately $G(S_0) = \gamma_1 = 0.35$. The IEA (2008) long-term cost curve for oil extraction gives a doubling to quadrupling of the extraction cost of oil if another 1000 GtC are extracted. Since we are considering all carbon-based energy sources (not only oil) which are more abundant and cheaper to extract, we assume a doubling of production costs if a total 2000 GtC is extracted. With $S_0 = 4000$ GtC,\(^{14}\) this gives $\gamma_2 = 1$.\(^{15}\)

Initial capital stock and depreciation rate

The initial capital stock is set to 200 (US$ trillion), which is taken from Rezai et al. (2012a). We set δ to be 0.5 per decade, which corresponds to a yearly depreciation rate of 6.7%.

Global production and global warming damages

Output before damages is $H_t = \left[(1 - \beta)\left(AK^a_t (A_t^L L_t)^{1-a} \right)^{1/\beta} + \beta \left(\frac{F_t + R_t}{\sigma} \right)^{1-1/\beta} \right]^{-\frac{1}{1-\beta}}, \beta \geq 0, 0 < \alpha < 1$ and $0 < \beta < 1$. This is a constant-returns-to-scale CES production function in energy and a capital-labour composite with β the elasticity of substitution and β the share parameter for

\(^{13}\) We take one barrel of oil to be equivalent to 1/10 ton carbon.

\(^{14}\) Stocks of carbon-based energy sources are notoriously hard to estimate. IPCC (2007) assumes in its A2- scenario that 7000 GtCO$_2$ (with 3.66 tCO2 per tC this equals 1912 GtC) will be burnt with a rising trend this century alone. We roughly double this number to get our estimate of 4000 GtC for initial fossil fuel reserves. Nordhaus (2008) assumes an upper limit for carbon-based fuel of 6000 GtC in the DICE-07.

\(^{15}\) Since $G(2000) / G(4000) = 2 \Rightarrow [4000 / (4000 - 2000)]^{\gamma_2} / (4000 / 2000)^{\gamma_2} = 2^{\gamma_2} = 2$.
energy. The capital-labour composite is defined by a constant-returns-to-scale Cobb-Douglas function with \(\alpha \) the share of capital, \(A \) total factor productivity and \(A_L^t \) the efficiency of labour. The two types of energy are perfect substitutes in production. Damages are calibrated so that they give the same level of global warming damages for the initial levels of output and mean temperature. It is convenient to rewrite production before damages as

\[
H_t = H_0 \left[(1 - \beta) \left(\frac{AK_t^\alpha (A_L^t L_t)^{1-\alpha}}{H_0} \right)^{-\frac{1}{1-\beta}} + \beta \left(\frac{F_t + R_t}{\sigma H_0} \right)^{-\frac{1}{1-\beta}} \right]^{1-\frac{1}{1-\beta}}.
\]

We set the share of capital to \(\alpha = 0.35 \) and the energy share parameter to \(\beta = 0.06 \). For the elasticity of factor substitution \(\delta \) we consider two alternatives: \(\delta = 0 \) (Leontief) for the benchmark run and \(\delta = 0.5 \) which we will refer to as the CES run. World GDP in 2010 is 63 $trillion. The energy intensity of output \(\sigma \) is calibrated to current energy use. In the Leontief case energy demand (only fossil fuel initially) is \(F_t = \sigma Z_t H_0 \). With carbon input equal to 8.36GtC in 2010, we obtain \(\sigma = (8.36 / 2.13) / 63 = 0.062 \). Finally, given \(A_L^t = 1 \) we can back out \(A = 34.67 \). Under CES we arrive at a different value. The approach is to keep \(\sigma \) fixed and to use actual values for energy, labour and capital to get the initial global output level of 630 $ trillion per decade.

Population growth and labour-augmenting technical progress

Population in 2010 (\(L_1 \)) is 6.5 billion people. Following Nordhaus (2008) and UN projections population growth is given by \(L_t = 6.5 - 2.98e^{-0.35t} \). Population growth starts at 1% per year and falls below 1% percent per decade within six decades and flattens out at 8.6 billion people. In the sensitivity analysis in section 4.3 we assume faster growth and a higher plateau to reflect more recent forecasts. Without loss of generality the efficiency of labour \(A_L^t = 3 - 2.443e^{-0.2t} \) starts out with \(A_L^t = 1 \) and an initial Harrod-neutral rate of technical progress of 2% per year. The efficiency of labour stabilizes at 3 times its current level.

Cost of the renewable and learning by doing

We model learning by doing with initial cost reductions and a lower limit for the cost of the renewable, i.e., \(b(B_t) = \chi_1 + \chi_2 e^{-\chi_3 t}, \chi_1, \chi_2, \chi_3 \geq 0 \). The unit cost of renewable energy is calibrated to the percentage of GDP necessary to generate all energy demand from renewables. Under a Leontief technology, with \(\delta \to 0 \), energy demand is \(\sigma Z_t H_t \). The cost
of generating all energy carbon free is $\sigma Z, H, b \mid Z, H, \sigma h$. Nordhaus (2008) assumes that it costs 5.6% of GDP to decarbonise today’s economy in a model of back-stop mitigation. In the model considered here this cost estimate needs to be added to the cost of producing conventional energy ranging between 5%-7%. This gives $\sigma h = 0.12$ or with $\sigma = 0.062$ we get $b_1 = b(0) = \chi_1 + \chi_2 = 2$ or $940/tC$. Through learning by doing this cost can be reduced by 60% to a lower limit of 5% of GDP, so that $b(\infty) = \chi_1 = 0.8$ and thus $\chi_2 = 1.2$. We assume that cumulative renewable production lowers unit cost at a falling rate and the parameter χ_3 measures this speed of learning. We calibrate learning such that costs would decrease slowly. We suppose a 20% cost reduction if all of world energy use during a decade would be supplied by renewable sources, so that $\chi_3 = 0.008$. This calibration is done for a Leontief technology and assumes that renewable energy is a viable but expensive alternative to fossil fuels. We assume that for a more general technology the same parameter values can be used.

Computational implementation

In our simulations we solve the model for finite time and use the turnpike property to approximate the infinite-horizon problem. All equilibrium paths approach the steady state quickly such that the turnpike property renders terminal conditions essentially unimportant. We allow for continuation stocks to reduce the impact of the terminal condition on the transitions paths in the early periods of the program. We use the computer program GAMS and its optimization solver CONOPT3 to solve the model numerically. The social planner solution, OPT, in which the externality is taken into account fit the program structure readily. To solve the business-as-usual (BAU) equilibrium paths, we adopt the iterative approach discussed in detail in Rezai (2011). To approximate the externality scenario, the aggregate economy is fragmented into N dynasties. Each dynasty has $1/N$th of the initial endowments and chooses consumption, investment and energy use in order to maximize the discounted total utility of per capita consumption. The dynasties understand the contribution of their own emissions to the climate change and learning in renewable energy, but take carbon emissions and knowledge generation of others as given. The climate and knowledge dynamics are affected by the decisions of all dynasties. This constitutes the market failures.

It might seem easier to simply assume that there is one dynasty that ignores the externality but this would not be a rational expectations equilibrium. The problem of a planner in a fragmented economy is not an optimization problem. The CONOPT3 solver of GAMS is very
powerful in solving maximization problems and it is more efficient to adopt an iterative routine than to attempt solving the equilibrium conditions directly. Given a technological specification, the computation of all four scenarios takes less than one minute. To introduce this approximate externality, we make the following adjustments to the initial stocks
\[K(0) = K_0 / N, S(0) = S_0 / N \text{ and } L(0) = L_0 / N. \] All production and cost functions are homogeneous of degree 1 and therefore invariant to \(N \). The introduction of the pollution externality only requires a modification of the transition equation of atmospheric carbon to include emissions regarded as exogenous by each dynasty:
\[
E_p(t + 1) = E_p(t) + \varphi_L (F(t) + Exg(t)) \quad \text{and} \\
E_\varphi(t + 1) = (1 - \varphi)E_\varphi(t) + \varphi(1 - \varphi_L)(F(t) + Exg(t)).
\]
The introduction of the learning externality requires a modification of the transition equation of cumulative production to include production regarded as exogenous by each dynasty:
\[
B(t + 1) = B(t) + R(t) + R_{Exg}(t)
\]
In the BAU scenario all dynasties essentially play a dynamic non-cooperative game, which leads to a Nash equilibrium in which each agent forecasts the paths of emissions and renewable generation correctly and all agents take the same decisions. As all dynasties are identical, equilibrium requires \(Exg = (N - 1)O \) and \(R_{Exg} = (N - 1)R \). Under business as usual the decision maker only adjusts her controls to take into account the effects of her own decisions (i.e. \(1/N \)th of the greenhouse gas and the learning externalities). If \(N = 1 \) the externalities are internalized and we obtain the social optimum. As \(N \rightarrow \infty \), we obtain the “laissez-faire” outcome characterized in section 2.

Following Rezai (2011), the numerical routine starts by setting the time path of emissions exogenous to the dynasty's optimization, \(Exg(t) \) and \(R_{Exg}(t) \), at an informed guess. GAMS solves for the representative dynasty's welfare-maximizing investment, consumption, and energy use choices conditional on this level of exogenous emissions. \((N - 1)\) times the dynasty's emission trajectory implied by these choices, \(F \), defines the time profile of exogenous emissions in the next iteration. The same applies for the knowledge trajectory. The routine is repeated and \(Exg(t) \) and \(R_{Exg}(t) \) are updated until the difference in the time profiles between iterations meets a pre-defined stopping criterion. In the reported results iterations stop if the deviation at each time period is at most 0.001%.
We set $N = 400$ to account for the fact that in the present world economy, the externality in the market of GHG emissions is already internalized to a very small extent through the imposition of carbon taxes or tradable emission permits and non-market regulation (e.g. through the Kyoto Protocol or the establishment of the European Union Emission Trading Scheme). In our BAU simulations, the dynastic planner takes into account less than 0.25% of global emissions.

Appendix C: CES technology

With a CES technology the substitution possibilities between the capital-labour aggregate on the one hand and energy on the other hand are feasible, in contrast with the Leontief technology. This implies that energy demand is more sensitive to relative price changes. In the previous section we have already discussed the relationship between scenarios in economies with additive and multiplicative damages. The outcomes for the case of a CES production function are presented in fig. 4 and inspection confirms that the qualitative differences between additive and multiplicative production damages are unaffected. For the sake of brevity, we concentrate here on the differences brought about by allowing for a higher degree of substitutability. The patterns of optimal capital accumulation and consumption are hardly affected. With a higher degree of substitutability more fossil fuel is used initially to substitute for scarce capital. This also holds in the market economy. Therefore, substitutability helps poor economies to increase growth. As a result, more carbon is burnt, the social cost of carbon is consistently higher and the economy switches to renewable earlier. The same holds for the laissez-faire economy: with better substitution possibilities more fossil fuel is used initially but for a shorter period of time, until 2090 instead of 2120.
Figure C.1: Simulation results with CES production technology

Key: no policy (—), carbon tax only (—-), renewable subsidy only (—-), social optimum (---)